7.3 Straight Line in Plane

Point coordinates: $X, Y, x, x_0, x_1, y_0, y_1, a_1, a_2, \dots$

Real numbers: k, a, b, p, t, A, B, C, A_1 , A_2 , ...

Angles: α , β

Get More Learning Materials Here :

Angle between two lines: φ

Normal vector: n

Position vectors: \vec{r} , \vec{a} , \vec{b}

- **622.** General Equation of a Straight Line Ax + By + C = 0
- 623. Normal Vector to a Straight Line The vector $\vec{n}(A, B)$ is normal to the line Ax + By + C = 0.

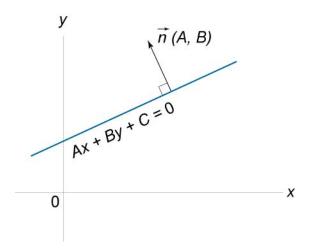


Figure 98.

624. Explicit Equation of a Straight Line (Slope-Intercept Form) y = kx + b.

The gradient of the line is $k = \tan \alpha$.

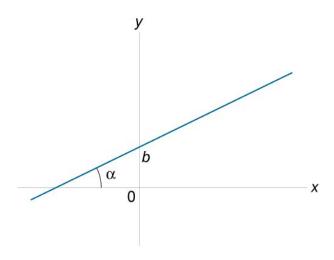


Figure 99.

625. Gradient of a Line

$$k = \tan \alpha = \frac{y_2 - y_1}{x_2 - x_1}$$

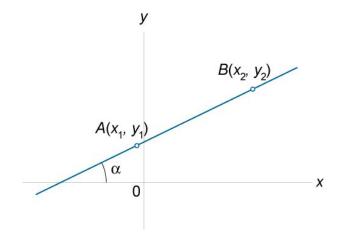


Figure 100.

626. Equation of a Line Given a Point and the Gradient $y = y_0 + k(x - x_0)$, where k is the gradient, $P(x_0, y_0)$ is a point on the line.

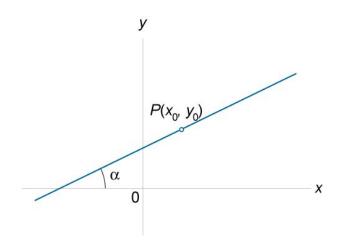


Figure 101.

627. Equation of a Line That Passes Through Two Points

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$
or
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0.$$

CLICK HERE

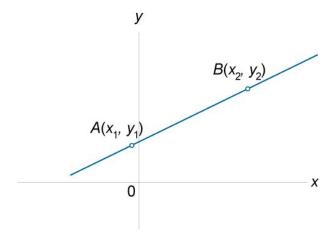


Figure 102.

628. Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1$$

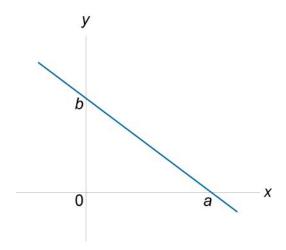


Figure 103.

629. Normal Form $x \cos \beta + y \sin \beta - p = 0$

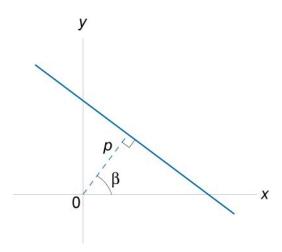


Figure 104.

630. Point Direction Form

$$\frac{\mathbf{x}-\mathbf{x}_1}{\mathbf{X}} = \frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{Y}},$$

where (X,Y) is the direction of the line and $P_1(x_1,y_1)$ lies on the line.

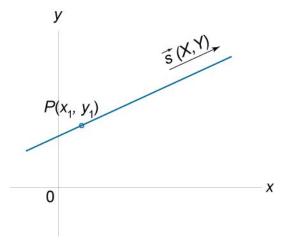


Figure 105.

- **631.** Vertical Line **x** = **a**
- **632.** Horizontal Line y = b
- 633. Vector Equation of a Straight Line
 r = a + tb,
 where
 O is the origin of the coordinates,
 X is any variable point on the line,
 a is the position vector of a known point A on the line,
 b is a known vector of direction, parallel to the line,
 t is a parameter,

 $\vec{r} = OX$ is the position vector of any point X on the line.

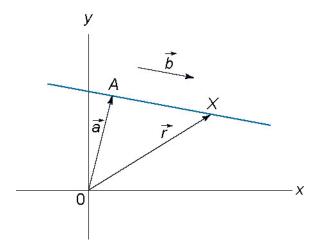


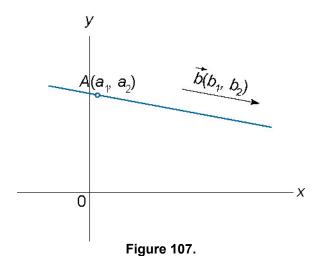
Figure 106.

634. Straight Line in Parametric Form

$$\begin{cases} x = a_1 + tb_1 \\ y = a_2 + tb_2 \end{cases}$$

where

(x, y) are the coordinates of any unknown point on the line, (a_1, a_2) are the coordinates of a known point on the line, (b_1, b_2) are the coordinates of a vector parallel to the line, t is a parameter.



635. Distance From a Point To a Line
The distance from the point P(a, b) to the line Ax + By + C = 0 is $d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}.$

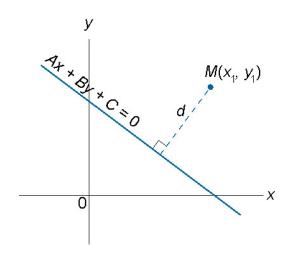


Figure 108.

636. Parallel Lines

Two lines $y = k_1x + b_1$ and $y = k_2x + b_2$ are parallel if $k_1 = k_2$.

Two lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ are parallel if

$$\frac{\mathbf{A}_1}{\mathbf{A}_2} = \frac{\mathbf{B}_1}{\mathbf{B}_2}.$$

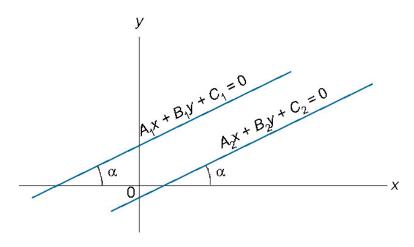


Figure 109.

637. Perpendicular Lines

Two lines $y = k_1x + b_1$ and $y = k_2x + b_2$ are perpendicular if

$$k_2 = -\frac{1}{k_1}$$
 or, equivalently, $k_1 k_2 = -1$.

Two lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ are perpendicular if

$$A_1 A_2 + B_1 B_2 = 0$$
.

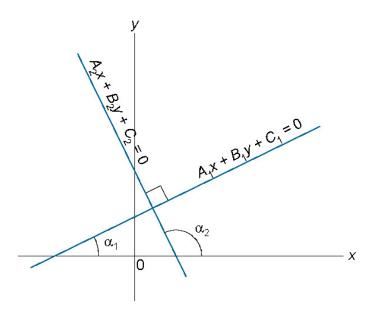


Figure 110.

638. Angle Between Two Lines

$$\tan \varphi = \frac{k_2 - k_1}{1 + k_1 k_2},$$

$$\cos \varphi = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \cdot \sqrt{A_2^2 + B_2^2}}.$$

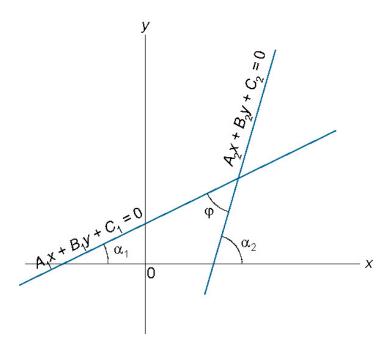


Figure 111.

639. Intersection of Two Lines
If two lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ intersect, the intersection point has coordinates $x_0 = \frac{-C_1B_2 + C_2B_1}{A_1B_2 - A_2B_1}, y_0 = \frac{-A_1C_2 + A_2C_1}{A_1B_2 - A_2B_1}.$